Chemistry Notes

NDA Chemistry Syllabus & Scope

This document covers the key topics outlined in the official syllabus for the Chemistry section of the NDA examination.

- Physical and Chemical changes.
- Elements, Mixtures and Compounds, Symbols, Formulae and simple Chemical Equations, Law of Chemical Combination (excluding problems).
- Properties of Air and Water.
- Preparation and Properties of Hydrogen, Oxygen, Nitrogen and Carbon dioxide, Oxidation and Reduction.
- Acids, bases and salts.
- Carbon-different forms.
- Fertilizers—Natural and Artificial.
- Material used in the preparation of substances like Soap, Glass, Ink, Paper,
 Cement, Paints, Safety Matches and Gun-Powder.
- Elementary ideas about the structure of Atom, Atomic Equivalent and Molecular Weights, Valency.

1. Fundamental Concepts

1.1 Physical vs. Chemical Changes

- **Physical Change:** Alters a substance's form (shape, size, state) but not its chemical identity. It's often reversible.
 - o Examples: Melting ice, boiling water, shredding paper, dissolving sugar.
- Chemical Change: Forms one or more new substances with different properties. It's generally irreversible.
 - Signs: Gas production (bubbles), color change, odor, temperature change, light/sound production.
 - **Examples:** Burning wood, rusting iron, cooking an egg, digestion of food.

1.2 Elements, Compounds & Mixtures

Category	Definition	Key Properties	Examples
Element	A pure substance of only one type of atom. Cannot be broken down chemically.	Has unique properties.	Iron (Fe), Carbon (C), Oxygen (O2)
Compound	A pure substance of two or more elements chemically bonded in a fixed ratio.	Properties are different from its elements. Separated only by chemical reactions. Fixed melting/boiling point.	Water (H2O), Salt (NaCl)
Mixture	Two or more substances physically combined in a variable ratio.	Components keep their properties. Separated by physical means (filtration, evaporation). Melts/boils over a range of temperatures.	Air, Seawater, Salad

1.3 Symbols, Formulae & Equations

- **Symbols:** One or two-letter codes for elements (e.g., **H**, **Ca**, **Fe**). The first letter is always capitalized, the second is lowercase.
- Formulae: Represent compounds using symbols and subscripts (e.g., H2O, Ca(NO3)2).
- **Equations:** Describe chemical reactions.
 - Reactants → Products
 - Must be balanced to follow the Law of Conservation of Mass.
 - o Balancing Tip: Change coefficients (numbers in front), never subscripts.
 - Example: Unbalanced: Fe+H2O→Fe3O4+H2. Balanced: 3Fe+4H2O→Fe3O4+4H2.

1.4 Law of Chemical Combination

- Conservation of Mass (Lavoisier): Mass is not created or destroyed in a chemical reaction.
- **Definite Proportions (Proust):** A compound always contains the same elements in the same fixed ratio by mass.
 - **Example:** Pure water (H2O) is always 11.1% hydrogen and 88.9% oxygen by mass.
- Multiple Proportions (Dalton): When two elements form multiple compounds, the mass ratios of one element combined with a fixed mass of the other are in simple whole numbers.
 - **Example:** In CO and CO2, the masses of oxygen that combine with 12g of carbon are 16g and 32g, a 1:2 ratio.
- Gay-Lussac's Law of Gaseous Volumes: The volumes of reacting gases are in simple whole-number ratios.
 - Example: 2 volumes of H2 + 1 volume of O2 → 2 volumes of H2O (gas). The ratio is 2:1:2.

2. Chemistry of Air & Water

2.1 Properties of Air

- Composition: A homogeneous mixture of gases.
 - Nitrogen (N2): ~78%
 - Oxygen (O2): ~21%
 - Argon (Ar): ~0.93%
 - Carbon Dioxide (CO2): ~0.04%
 - Also contains variable water vapor and trace gases.
- Key Roles:
 - o Oxygen: Essential for respiration and combustion. ²
 - **Nitrogen:** Acts as a diluent, controlling combustion. ²
 - o Carbon Dioxide: Used in photosynthesis; a greenhouse gas. 2

2.2 Properties of Water (H2O)

- **Structure:** A polar molecule due to its bent shape, leading to strong **hydrogen bonds**.
- Key Properties:
 - Universal Solvent: Dissolves many polar and ionic substances.

- High Specific Heat: Absorbs a lot of heat before its temperature rises, regulating climate. ⁴
- Anomalous Expansion: Reaches maximum density at 4°C. Ice is less dense than liquid water, so it floats. This insulates lakes and allows aquatic life to survive winter.
- o Amphoteric: Can act as both an acid and a base. 4

3. Key Gases & Reactions

3.1 Preparation and Properties of Key Gases

Gas	Lab Preparation	Key Properties	Main Uses
Hydrogen (H2)	Zn+2HCl→ZnCl2+H2	Lightest gas, highly flammable, 'pop' sound with flame.	Ammonia synthesis (Haber Process), rocket fuel.
Oxygen (O2)	2H2O2MnO22H2O+O 2	Supports combustion, relights a glowing splint.	Respiration, welding, steel manufacturing.
Nitrogen (N2)	NH4Cl+NaNO2→N2+ 2H2O+NaCl	Inert (unreactive) due to strong triple bond.	Ammonia synthesis, inert atmosphere for food packaging.
Carbon Dioxide (CO2)	CaCO3+2HCl→CaCl2 +H2O+CO2	Denser than air, extinguishes flames, turns limewater milky.	Carbonated drinks, fire extinguishers, dry ice (refrigerant).

3.2 Oxidation and Reduction (Redox)

Definitions:

- Oxidation: Loss of electrons OR gain of oxygen.
- Reduction: Gain of electrons OR loss of oxygen.
- o Mnemonic: OIL RIG (Oxidation Is Loss, Reduction Is Gain).

Agents:

- Oxidizing Agent: Causes oxidation, gets reduced itself.
- o Reducing Agent: Causes reduction, gets oxidized itself.
- Example: CuO+H2→Cu+H2O

- CuO is reduced (loses oxygen) and is the oxidizing agent.
- H2 is oxidized (gains oxygen) and is the reducing agent.

3.3 Acids, Bases, and Salts

- Acids: Taste sour, turn blue litmus red, pH < 7.
 - Examples: Hydrochloric acid (HCl), Acetic acid (CH3COOH in vinegar). 1
- Bases: Taste bitter, feel soapy, turn red litmus blue, pH > 7.
 - Examples: Sodium hydroxide (NaOH), Ammonium hydroxide (NH4OH).
- Neutralization: The reaction between an acid and a base.
 - General Equation: Acid+Base→Salt+Water¹
 - Example: HCl+NaOH→NaCl+H2O¹
- Salts: Ionic compounds formed from the cation of a base and the anion of an acid.

4. Carbon & Industrial Materials

4.1 Carbon—Different Forms (Allotropes)

Allotrope	Structure	Key Properties
Diamond	Each carbon atom is bonded to four others in a rigid 3D tetrahedral lattice (sp3).	Extremely hard, electrical insulator, transparent.
Graphite	Each carbon atom is bonded to three others in flat hexagonal layers (sp2). Layers are held by weak forces.	Soft, slippery, electrical conductor (due to delocalized electrons).

4.2 Fertilizers—Natural and Artificial

- Natural (Organic): Derived from organic matter (manure, compost).
 Slow-releasing and improves soil health.
- Artificial (Synthetic): Manufactured chemicals with precise NPK (Nitrogen, Phosphorus, Potassium) content. Fast-acting but can harm soil over time and cause nutrient runoff.

4.3 Preparation of Common Substances

- Soap: Made by saponification: the reaction of a fat/oil with a strong base like sodium hydroxide (NaOH).
- Glass: Made by melting silica sand (SiO2), soda ash (Na2CO3), and limestone (CaCO3) at high temperatures. ⁵
- Ink: A mixture of a colorant (pigment/dye), a binder (resin), a solvent, and additives.
- Paper: Made from cellulose fibers (usually from wood pulp) by separating fibers from lignin and forming them into sheets.
- Cement (Portland): Made by heating limestone and clay in a kiln to form 'clinker', which is then ground with gypsum. 8
- Paints: Consist of pigment (color), resin (binder), solvent (carrier), and additives.
- Safety Matches: The match head contains an oxidizing agent (potassium chlorate, KClO3) and fuel (sulfur). The striking surface contains red phosphorus.
- Gunpowder: A mixture of potassium nitrate (KNO3) (oxidizer), charcoal (fuel), and sulfur (fuel).

5. Atomic Structure & Quantification

5.1 Structure of the Atom (Bohr's Model)

Postulates:

- Electrons revolve around the nucleus in fixed circular paths called orbits or shells.
- 2. Each orbit has a fixed, quantized energy level.
- 3. Electrons can jump between orbits by absorbing or emitting energy (photons).
- **Limitations:** Fails to explain spectra of multi-electron atoms, the Zeeman effect (splitting of spectral lines in a magnetic field), and violates the Heisenberg Uncertainty Principle.

5.2 Atomic, Molecular & Equivalent Weights

- Atomic Weight: The weighted average mass of an element's isotopes (in amu).
- Molecular Weight: The sum of the atomic weights of all atoms in a molecule's formula.
 - **Example (Ca(OH)2):** $(1 \times 40) + (2 \times 16) + (2 \times 1) = 74$ amu. ¹¹
- **Equivalent Weight:** Equivalent Weight=n-factorMolar Mass
 - Acid: n-factor = number of replaceable H+ ions (basicity). For H2SO4, n=2.
 - Base: n-factor = number of replaceable OH- ions (acidity). For Ca(OH)2, n=2.
 - Salt: n-factor = total positive charge of the cation. For Na2CO3, n=2.

5.3 Valency

- **Definition:** The combining capacity of an atom, determined by its **valence electrons** (electrons in the outermost shell).
- **Metals:** Valency = number of valence electrons (they lose electrons).
 - o **Example:** Sodium (Group 1) has 1 valence electron, so its valency is 1. 12
- Non-metals: Valency = 8 (number of valence electrons) (they gain electrons).
 - **Example:** Oxygen (Group 16) has 6 valence electrons, so its valency is $8 6 = 2^{-12}$
- Periodic Table Trend: Elements in the same group typically have the same valency. ¹²